0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 2 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 442 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 76 ms)
↳18 CpxRNTS
↳19 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 481 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 204 ms)
↳24 CpxRNTS
↳25 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳26 CpxRNTS
↳27 IntTrsBoundProof (UPPER BOUND(ID), 309 ms)
↳28 CpxRNTS
↳29 IntTrsBoundProof (UPPER BOUND(ID), 48 ms)
↳30 CpxRNTS
↳31 FinalProof (⇔, 0 ms)
↳32 BOUNDS(1, n^3)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
app(nil, y) → y [1]
app(add(n, x), y) → add(n, app(x, y)) [1]
reverse(nil) → nil [1]
reverse(add(n, x)) → app(reverse(x), add(n, nil)) [1]
shuffle(nil) → nil [1]
shuffle(add(n, x)) → add(n, shuffle(reverse(x))) [1]
app(nil, y) → y [1]
app(add(n, x), y) → add(n, app(x, y)) [1]
reverse(nil) → nil [1]
reverse(add(n, x)) → app(reverse(x), add(n, nil)) [1]
shuffle(nil) → nil [1]
shuffle(add(n, x)) → add(n, shuffle(reverse(x))) [1]
app :: nil:add → nil:add → nil:add nil :: nil:add add :: a → nil:add → nil:add reverse :: nil:add → nil:add shuffle :: nil:add → nil:add |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
shuffle
reverse
app
const
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
nil => 0
const => 0
app(z, z') -{ 1 }→ y :|: y >= 0, z = 0, z' = y
app(z, z') -{ 1 }→ 1 + n + app(x, y) :|: n >= 0, x >= 0, y >= 0, z = 1 + n + x, z' = y
reverse(z) -{ 2 }→ app(app(reverse(x'), 1 + n' + 0), 1 + n + 0) :|: n >= 0, z = 1 + n + (1 + n' + x'), x' >= 0, n' >= 0
reverse(z) -{ 2 }→ app(0, 1 + n + 0) :|: z = 1 + n + 0, n >= 0
reverse(z) -{ 1 }→ 0 :|: z = 0
shuffle(z) -{ 1 }→ 0 :|: z = 0
shuffle(z) -{ 2 }→ 1 + n + shuffle(app(reverse(x''), 1 + n'' + 0)) :|: n >= 0, n'' >= 0, x'' >= 0, z = 1 + n + (1 + n'' + x'')
shuffle(z) -{ 2 }→ 1 + n + shuffle(0) :|: z = 1 + n + 0, n >= 0
app(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
app(z, z') -{ 1 }→ 1 + n + app(x, z') :|: n >= 0, x >= 0, z' >= 0, z = 1 + n + x
reverse(z) -{ 2 }→ app(app(reverse(x'), 1 + n' + 0), 1 + n + 0) :|: n >= 0, z = 1 + n + (1 + n' + x'), x' >= 0, n' >= 0
reverse(z) -{ 2 }→ app(0, 1 + (z - 1) + 0) :|: z - 1 >= 0
reverse(z) -{ 1 }→ 0 :|: z = 0
shuffle(z) -{ 1 }→ 0 :|: z = 0
shuffle(z) -{ 2 }→ 1 + n + shuffle(app(reverse(x''), 1 + n'' + 0)) :|: n >= 0, n'' >= 0, x'' >= 0, z = 1 + n + (1 + n'' + x'')
shuffle(z) -{ 2 }→ 1 + (z - 1) + shuffle(0) :|: z - 1 >= 0
{ app } { reverse } { shuffle } |
app(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
app(z, z') -{ 1 }→ 1 + n + app(x, z') :|: n >= 0, x >= 0, z' >= 0, z = 1 + n + x
reverse(z) -{ 2 }→ app(app(reverse(x'), 1 + n' + 0), 1 + n + 0) :|: n >= 0, z = 1 + n + (1 + n' + x'), x' >= 0, n' >= 0
reverse(z) -{ 2 }→ app(0, 1 + (z - 1) + 0) :|: z - 1 >= 0
reverse(z) -{ 1 }→ 0 :|: z = 0
shuffle(z) -{ 1 }→ 0 :|: z = 0
shuffle(z) -{ 2 }→ 1 + n + shuffle(app(reverse(x''), 1 + n'' + 0)) :|: n >= 0, n'' >= 0, x'' >= 0, z = 1 + n + (1 + n'' + x'')
shuffle(z) -{ 2 }→ 1 + (z - 1) + shuffle(0) :|: z - 1 >= 0
app(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
app(z, z') -{ 1 }→ 1 + n + app(x, z') :|: n >= 0, x >= 0, z' >= 0, z = 1 + n + x
reverse(z) -{ 2 }→ app(app(reverse(x'), 1 + n' + 0), 1 + n + 0) :|: n >= 0, z = 1 + n + (1 + n' + x'), x' >= 0, n' >= 0
reverse(z) -{ 2 }→ app(0, 1 + (z - 1) + 0) :|: z - 1 >= 0
reverse(z) -{ 1 }→ 0 :|: z = 0
shuffle(z) -{ 1 }→ 0 :|: z = 0
shuffle(z) -{ 2 }→ 1 + n + shuffle(app(reverse(x''), 1 + n'' + 0)) :|: n >= 0, n'' >= 0, x'' >= 0, z = 1 + n + (1 + n'' + x'')
shuffle(z) -{ 2 }→ 1 + (z - 1) + shuffle(0) :|: z - 1 >= 0
app: runtime: ?, size: O(n1) [z + z'] |
app(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
app(z, z') -{ 1 }→ 1 + n + app(x, z') :|: n >= 0, x >= 0, z' >= 0, z = 1 + n + x
reverse(z) -{ 2 }→ app(app(reverse(x'), 1 + n' + 0), 1 + n + 0) :|: n >= 0, z = 1 + n + (1 + n' + x'), x' >= 0, n' >= 0
reverse(z) -{ 2 }→ app(0, 1 + (z - 1) + 0) :|: z - 1 >= 0
reverse(z) -{ 1 }→ 0 :|: z = 0
shuffle(z) -{ 1 }→ 0 :|: z = 0
shuffle(z) -{ 2 }→ 1 + n + shuffle(app(reverse(x''), 1 + n'' + 0)) :|: n >= 0, n'' >= 0, x'' >= 0, z = 1 + n + (1 + n'' + x'')
shuffle(z) -{ 2 }→ 1 + (z - 1) + shuffle(0) :|: z - 1 >= 0
app: runtime: O(n1) [1 + z], size: O(n1) [z + z'] |
app(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
app(z, z') -{ 2 + x }→ 1 + n + s :|: s >= 0, s <= 1 * x + 1 * z', n >= 0, x >= 0, z' >= 0, z = 1 + n + x
reverse(z) -{ 3 }→ s' :|: s' >= 0, s' <= 1 * 0 + 1 * (1 + (z - 1) + 0), z - 1 >= 0
reverse(z) -{ 2 }→ app(app(reverse(x'), 1 + n' + 0), 1 + n + 0) :|: n >= 0, z = 1 + n + (1 + n' + x'), x' >= 0, n' >= 0
reverse(z) -{ 1 }→ 0 :|: z = 0
shuffle(z) -{ 1 }→ 0 :|: z = 0
shuffle(z) -{ 2 }→ 1 + n + shuffle(app(reverse(x''), 1 + n'' + 0)) :|: n >= 0, n'' >= 0, x'' >= 0, z = 1 + n + (1 + n'' + x'')
shuffle(z) -{ 2 }→ 1 + (z - 1) + shuffle(0) :|: z - 1 >= 0
app: runtime: O(n1) [1 + z], size: O(n1) [z + z'] |
app(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
app(z, z') -{ 2 + x }→ 1 + n + s :|: s >= 0, s <= 1 * x + 1 * z', n >= 0, x >= 0, z' >= 0, z = 1 + n + x
reverse(z) -{ 3 }→ s' :|: s' >= 0, s' <= 1 * 0 + 1 * (1 + (z - 1) + 0), z - 1 >= 0
reverse(z) -{ 2 }→ app(app(reverse(x'), 1 + n' + 0), 1 + n + 0) :|: n >= 0, z = 1 + n + (1 + n' + x'), x' >= 0, n' >= 0
reverse(z) -{ 1 }→ 0 :|: z = 0
shuffle(z) -{ 1 }→ 0 :|: z = 0
shuffle(z) -{ 2 }→ 1 + n + shuffle(app(reverse(x''), 1 + n'' + 0)) :|: n >= 0, n'' >= 0, x'' >= 0, z = 1 + n + (1 + n'' + x'')
shuffle(z) -{ 2 }→ 1 + (z - 1) + shuffle(0) :|: z - 1 >= 0
app: runtime: O(n1) [1 + z], size: O(n1) [z + z'] reverse: runtime: ?, size: O(n1) [z] |
app(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
app(z, z') -{ 2 + x }→ 1 + n + s :|: s >= 0, s <= 1 * x + 1 * z', n >= 0, x >= 0, z' >= 0, z = 1 + n + x
reverse(z) -{ 3 }→ s' :|: s' >= 0, s' <= 1 * 0 + 1 * (1 + (z - 1) + 0), z - 1 >= 0
reverse(z) -{ 2 }→ app(app(reverse(x'), 1 + n' + 0), 1 + n + 0) :|: n >= 0, z = 1 + n + (1 + n' + x'), x' >= 0, n' >= 0
reverse(z) -{ 1 }→ 0 :|: z = 0
shuffle(z) -{ 1 }→ 0 :|: z = 0
shuffle(z) -{ 2 }→ 1 + n + shuffle(app(reverse(x''), 1 + n'' + 0)) :|: n >= 0, n'' >= 0, x'' >= 0, z = 1 + n + (1 + n'' + x'')
shuffle(z) -{ 2 }→ 1 + (z - 1) + shuffle(0) :|: z - 1 >= 0
app: runtime: O(n1) [1 + z], size: O(n1) [z + z'] reverse: runtime: O(n2) [4 + 3·z + 2·z2], size: O(n1) [z] |
app(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
app(z, z') -{ 2 + x }→ 1 + n + s :|: s >= 0, s <= 1 * x + 1 * z', n >= 0, x >= 0, z' >= 0, z = 1 + n + x
reverse(z) -{ 3 }→ s' :|: s' >= 0, s' <= 1 * 0 + 1 * (1 + (z - 1) + 0), z - 1 >= 0
reverse(z) -{ 8 + s'' + s1 + 3·x' + 2·x'2 }→ s2 :|: s'' >= 0, s'' <= 1 * x', s1 >= 0, s1 <= 1 * s'' + 1 * (1 + n' + 0), s2 >= 0, s2 <= 1 * s1 + 1 * (1 + n + 0), n >= 0, z = 1 + n + (1 + n' + x'), x' >= 0, n' >= 0
reverse(z) -{ 1 }→ 0 :|: z = 0
shuffle(z) -{ 1 }→ 0 :|: z = 0
shuffle(z) -{ 7 + s3 + 3·x'' + 2·x''2 }→ 1 + n + shuffle(s4) :|: s3 >= 0, s3 <= 1 * x'', s4 >= 0, s4 <= 1 * s3 + 1 * (1 + n'' + 0), n >= 0, n'' >= 0, x'' >= 0, z = 1 + n + (1 + n'' + x'')
shuffle(z) -{ 2 }→ 1 + (z - 1) + shuffle(0) :|: z - 1 >= 0
app: runtime: O(n1) [1 + z], size: O(n1) [z + z'] reverse: runtime: O(n2) [4 + 3·z + 2·z2], size: O(n1) [z] |
app(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
app(z, z') -{ 2 + x }→ 1 + n + s :|: s >= 0, s <= 1 * x + 1 * z', n >= 0, x >= 0, z' >= 0, z = 1 + n + x
reverse(z) -{ 3 }→ s' :|: s' >= 0, s' <= 1 * 0 + 1 * (1 + (z - 1) + 0), z - 1 >= 0
reverse(z) -{ 8 + s'' + s1 + 3·x' + 2·x'2 }→ s2 :|: s'' >= 0, s'' <= 1 * x', s1 >= 0, s1 <= 1 * s'' + 1 * (1 + n' + 0), s2 >= 0, s2 <= 1 * s1 + 1 * (1 + n + 0), n >= 0, z = 1 + n + (1 + n' + x'), x' >= 0, n' >= 0
reverse(z) -{ 1 }→ 0 :|: z = 0
shuffle(z) -{ 1 }→ 0 :|: z = 0
shuffle(z) -{ 7 + s3 + 3·x'' + 2·x''2 }→ 1 + n + shuffle(s4) :|: s3 >= 0, s3 <= 1 * x'', s4 >= 0, s4 <= 1 * s3 + 1 * (1 + n'' + 0), n >= 0, n'' >= 0, x'' >= 0, z = 1 + n + (1 + n'' + x'')
shuffle(z) -{ 2 }→ 1 + (z - 1) + shuffle(0) :|: z - 1 >= 0
app: runtime: O(n1) [1 + z], size: O(n1) [z + z'] reverse: runtime: O(n2) [4 + 3·z + 2·z2], size: O(n1) [z] shuffle: runtime: ?, size: O(n1) [z] |
app(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
app(z, z') -{ 2 + x }→ 1 + n + s :|: s >= 0, s <= 1 * x + 1 * z', n >= 0, x >= 0, z' >= 0, z = 1 + n + x
reverse(z) -{ 3 }→ s' :|: s' >= 0, s' <= 1 * 0 + 1 * (1 + (z - 1) + 0), z - 1 >= 0
reverse(z) -{ 8 + s'' + s1 + 3·x' + 2·x'2 }→ s2 :|: s'' >= 0, s'' <= 1 * x', s1 >= 0, s1 <= 1 * s'' + 1 * (1 + n' + 0), s2 >= 0, s2 <= 1 * s1 + 1 * (1 + n + 0), n >= 0, z = 1 + n + (1 + n' + x'), x' >= 0, n' >= 0
reverse(z) -{ 1 }→ 0 :|: z = 0
shuffle(z) -{ 1 }→ 0 :|: z = 0
shuffle(z) -{ 7 + s3 + 3·x'' + 2·x''2 }→ 1 + n + shuffle(s4) :|: s3 >= 0, s3 <= 1 * x'', s4 >= 0, s4 <= 1 * s3 + 1 * (1 + n'' + 0), n >= 0, n'' >= 0, x'' >= 0, z = 1 + n + (1 + n'' + x'')
shuffle(z) -{ 2 }→ 1 + (z - 1) + shuffle(0) :|: z - 1 >= 0
app: runtime: O(n1) [1 + z], size: O(n1) [z + z'] reverse: runtime: O(n2) [4 + 3·z + 2·z2], size: O(n1) [z] shuffle: runtime: O(n3) [1 + 9·z + 4·z2 + 2·z3], size: O(n1) [z] |